DELHI TECHNOLOGICAL UNIVERSITY

Department of Civil Engineering

Syllabi for Master of Technology

Geotechnical Engineering

M. Tech. Geotechnical Engineering				
Course code: Course Title	Course Structure.			Pre-Requisite
CTE501. Advanced Soil Machanics	L	Т	Р	NL1
GTE501: Advanced Soil Mechanics	3	0	2	Nil

Course Objective: Introduction to the concept of soil mechanics and knowledge of various properties of soils. Students will be able to develop concepts like clay mineral structure and the engineering behaviour of soil.

S. No	Course Outcomes (CO)			
CO1	Acquire a comprehensive une particles and special soils	derstanding of clay m	inerals, the structure of soil	
CO2	Analyse effective stress, pore	e pressure, hydraulic c	conductivity, and Seepage of so	oil
CO3	Develop a comprehensive un consolidation	derstanding of issues	related to compressibility and	
CO4	Analyse shear behaviour and	settlement of soils		
CO5	Understand in situ undrained	shear strength, stress	history, and modulus values	
	CO·	PO Articulation Me	trices	
Course Outco me	PO1	PO2	PO3	
CO1	3	1	1	
CO2	3	2	1	
CO3	1	2	1	
CO4	3	3	2	
CO5	1	3	3	
	1			
S. No		Contents		Contact hours
UNIT 1	Clay mineralogy, clay-water soils: collapsible & sensitive			8
UNIT 2	Effective stress, pore press variation, electro osmosis, Se various techniques, seepage i body.	epage behaviour of s	oil-flow net constructions by	8
UNIT 3	Consolidation: one-dimensio primary and secondary conso	lidation, determinatio		10

UNIT 4 Shear behaviour of soils, pore pressure parameters, UU, CU & CD tests, stress path method for settlement analysis.				
UNIT 5 Total & effective stress- path, water content contours, stress history, anisotropy of strength, thixotropy, creep, determination of in situ undrained shear strength, stress-strain characteristics of soils, determination of modulus values.				
	TOTAL			
REFERI	ENCES			
S. No.	o. Name of Books/Authors/Publishers Publi Repr			
1	Soil Mechanics: Principle and Practice: GE Barnes, (2000) (ISBN 9-03- 088753-7).			
2 Advanced Soil Mechanics: BM Das (1997), (ISBN 0-77-04915-8). 1997				
3 Soil Mechanics: TW Lambe and RV Whitman (1987), (ISBN 0-71- 6059714-1). 1987				
4	Fundamentals of Soil Behaviour: James K. Mitchell (1993), (ISBN 7-83-4697512-6).	1993		

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Geotechnical Engineering				
Course code: Course Title	Course Structure Pre-Requisite			
CTE502. Control to basical Foundation	L	Т	Р	
GTE502: Geotechnical Exploration	3	0	2	

Course Objective: The objective of this course is to provide students with a comprehensive understanding of surface and sub-surface exploration methods, including aerial and remote sensing techniques, geophysical methods, and rock drilling procedures. Students will learn about various sampling techniques, sampling disturbance mitigation strategies, and methods for storage, labelling, and transportation of samples.

						-	
S. No	Course Outcomes (CO)		-	_			
CO1		Understanding of Exploration Methods					
CO2	Proficiency in Drilling, Sam	pling, and Lodgin	g Techniq	ues			
CO3	Comprehensive knowledge o	f Stress and Defo	rmation in	1 Rocks	5		
CO4	Expertise in Strength and Per	rmeability Testing	5				
CO5	Data Processing and Site Mo	nitoring Skills					
	CO	-PO Articulation	Metrices	5			
Course Outco me	PO1	PO2			Р	03	
CO1	3	3 1 1					
CO2	3	2				1	
CO3	3	2				1	
CO4	3	3				2	
CO5	3	3				3	
S. No.		Contents					Contact hours
UNIT 1	Surface and subsurface exploration methods: Aerial and remote sensing techniques, Geophysical methods, electrical resistivity, seismic refraction.					8	
UNIT 2	Drilling Sampling and Lodgi techniques, Logging stratigra		ock drilli	ng, San	npling		8
UNIT 3	Stress and Deformation in Ro ratio. Stress relief and compe	ocks: Stresses in ro					10

	jack, hydro fracture, strain rosette, and dilatometers. Deformability, pre tunnel, and borehole tests.	ssure			
UNIT 4	UNIT 4 Strength and Permeability testing: Strength tests, in situ compression, tension, and direct shear tests. Pull out tests. Borehole extensometers, piezometers, embedment gauges, inclinometers, Slope indicators, packer tests for in-situ permeability, Codal provisions - Relevant standards and codes.				
UNIT 5	Field and Laboratory Testing, Data processing and Interpretation: Standard penetration, plate load, static and dynamic cone penetration, field vane shear and				
	TOTAL	42			
REFERI	ENCES				
REFERI S. No.	ENCES Name of Books/Authors/Publishers	Year of Publication Reprint			
		Publication			
S. No.	Name of Books/Authors/Publishers Bowles, J.E., Foundation Analysis and Design, McGraw-Hill	Publication Reprint			
S. No.	Name of Books/Authors/Publishers Bowles, J.E., Foundation Analysis and Design, McGraw-Hill International Edition.	Publication Reprint 1997			

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech.	Geotechnical Engineering						
Course c	ode: Course Title		Cou Stru	irse icture.		Pre-Requ	lisite
GTE503	: Rock Mechanics		L T P 3 0 2				
of rocks, undergrou	Dbjective: To make the stude laboratory testing, in-situ test und construction, foundations gth of rocks.	ting of rocks by variou	is met	hods, t	unnel	ling in rocks	,
_	_		_	_	_	-	
S. No	Course Outcomes (CO)						
CO1	Understand the concept of r	ock mechanics and var	ious	classifi	catior	ns of rocks.	
CO2	Understand laboratory testir	ng of rocks and assess	the in	-situ pı	opert	ies by variou	is methods
CO3	Analyze various theories for underground excavation	r evaluating pressure a	round	l openii	ngs in	the rock ma	iss and
CO4	Analyse the bearing capacit	y of intact and jointed	rocks	and de	sign a	a foundation	on rock.
CO5	Analyse real-life problems	of tunnels with rock m	ass ar	ıd unde	rgrou	nd openings	
	CC	-PO Articulation Me	etrice	8			
Course Outco	PO1	PO2				PO3	
me CO1	3	1				1	
CO2	3	2				1	
CO3	3	2				1	
CO4	3	3				2	
CO5	3	3				3	
S. No		Contents					Contact hours
UNIT 1	Introduction, problems of ro	ock mechanics, classifi	icatio	ns of ro	ock ma	asses	8
UNIT 2	Rock exploration – rock cori fraction in rocks; elasticity Griffith's theory, Coulomb' characteristics, instrumenta permeability.	& strength of rocks; 's theory, in-situ tests	stren on r	gth & ock m	failur ass; d	e of rocks; eformation	8

UNIT 3 Mechanical, thermal, and electrical properties of rock mass openings in rock mass and stresses around openings; pressure tunnels, development of plastic zone; rock support needed to avoid plastic deformation; lined and unlined tunnels; support pressure and slip of the joint; underground excavation and subsidence.				
UNIT 4	INIT 4 Foundation on rocks; bearing capacity of intact and jointed rocks; rock slopes; slope stability, rock bolt anchors & grouting			
UNIT 5	C 5 Underground openings, pillars, tunnels, methods of construction, problems associated with tunnels, tunnelling in various subsoil conditions and rocks.			
	TOTAL		42	
REFERI	ENCES	1		
S. No.	Name of Books/Authors/Publishers	Year o Publio Repri	cation /	
1	Rock Mechanics Design in Mining and Tunnelling, by Z.T. Bieniawski, (1984), Pub: A.A. Balkema	1984		
2	Engineering Rock Mass Classification by Z.T. Bieniawski.	1989		
3	Introduction to Rock Mechanics by R.E. Goodman.	1989		
4	Design and Construction of Tunnels by Pietro Lunardi, Pub: Springer, (2008)	2008		

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Geotechnical Engineering					
Course code: Course Title	Course Structure. Pre-Requisite				
GTE504: Soil Structure Interaction		Т	Р	Nil	
		1	0	1111	

Course Objective: The objective of this course is to provide students with a comprehensive understanding of soil-structure interaction problems, particularly focusing on shallow foundations and beams on elastic foundations. Students will learn about contact pressures, sub-grade modulus concepts, and the analysis of foundations of finite rigidity.

S. No	Course Outcomes (CO)
CO1	Understanding of Soil-Structure Interaction (SSI) for Shallow Foundations
CO2	Proficiency in Analytical Methods for Beams on Winkler Foundation
CO3	Competence in Analyzing Beams on Elastic Half Space
CO4	Expertise in Dynamic Soil-Structure Interaction
CO5	Advanced Knowledge of Wave Propagation and SSI Applications

	CO-PO Articulation Metrices									
Course Outco me	PO1	PO2	PO3							
CO1	3	1	1							
CO2	3	2	1							
CO3	3	2	1							
CO4	3	3	2							
CO5	3	3	3							

S. No	Contents	Contact hours
UNIT 1	Soil - Structure Interaction for Shallow Foundations: Contact pressures and soil- structure interaction for shallow foundations. Concept of sub-grade modulus, effects/parameters influencing subgrade modulus. Analysis of foundations of finite rigidity, Beams on elastic foundation concept, introduction to the solution of beam problems.	8
UNIT 2	Analytical Methods of Analysis of Finite Beams on Winkler Foundation: Introduction, analysis of finite and infinite beam on wrinkle foundation, method of super position, method of initial parameters and its application to analysis of regular beams, analysis of continuous beams and frames on wrinkle foundation,	8

		<u> </u>	• 1 • 1	•.1	1 .	4.1		
	analysis of frames on wrinkle foundation, analysis and vertical loads.	of rig	gid pile	s with	hor1z	contal		
UNIT 3	Analysis of Beams on Elastic Half Space: Introduction, analysis of Rigid Beams, short beam analysis, long beam Analysis, Analysis of Frame on Elastic Half Space.							
UNIT 4	Dynamic Soil Structure Interaction: Direct and Sub-structure method of Analysis, Equation of Motion for flexible and rigid base, kinematic interaction, inertial interaction and effect of embedment, Temporal and special variation of external loads including seismic loads, continuous models, discrete models and finite element models.							
UNIT 5	Wave Propagation for SSI: Waves in Semi-Infinite Medium, one two and three dimensional wave propagation, dynamic stiffness matrix for out of plane and in plane motion. Free Field Response of Site: Control point and control motion for seismic analysis, dispersion and attenuation of waves, half space, single layer on half space, modelling of boundaries, elementary, local, consistent and transmitting boundaries. Engineering Application of Soil-Structure Interaction: Low rise residential building, multi-storey building, bridges and dams, soil-pile structure interaction							
	TOTAL						42	
_	-	-	_	-	-			
REFERE	INCES	I			1 -			
S. No.	Name of Books/Authors/Publishers					Year Publi Repri	cation /	
1	Tsudik, E. (2012)"Analysis of Structures on Elastic Foundations"- J. 2012 Ross Publishing							
2	Wolf, J. P. (1985)"Dynamic soil-structure interaction"- Prentice Hall int., 198							
3	Wolf, J. P., & Song, C. (1996). "Finite-element modelling of unbounded media"- Chichester: Wiley.							
4	"Structure Soil Interaction" - State of the Art Report, Institution of Structural Engineers. (1978)							
5	"Structure Soil Interaction" - State of the Art Repo Structural Engineers. (1978)	ort, In	"Structure Soil Interaction" - State of the Art Report, Institution of 19					

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech	. Geotechnical Engineering					
Course o	code: Course Title		Course Structu	re.	Pre-Requ	iisite
GTE505	: Advanced Foundation Engin	eering	L T 3 0	P 2	Nil	
different foundation	Objective: The objective of the projects, depth, location, bearing ons, action and load capacity of ability and, construction of we we soil.	ng capacity, and sett a single pile, and pi	lement cr les in a gi	riteria for roup, des	the design the design	of shallow foundation,
-	-			_	-	
S. No	Course Outcomes (CO)		<u>ı I</u>	1	<u> </u>	
CO1	Analyse the given soil conditi	on to decide the suit	ability of	a particu	lar foundati	on.
CO2	Design shallow foundations for	or structures.				
CO3	Design deep foundations for s	tructures.				
CO4	Design and construct well fou tilts and shifts of wells.	ndations and underst	and meth	ods to re	ctify the	
CO5	Design foundations on problem	matic soils.				
	CO-]	PO Articulation Me	trices			
Course Outco me	PO1	PO2			PO3	
CO1	3	1			1	
CO2	3	2			1	
CO3	3	2			1	
CO4	3	3			2	
CO5	3	3			3	
S. No		Contents				Contact hours
UNIT 1	Planning of soil exploration exploration, methods of borin	1 5	,			8
UNIT 2	Shallow foundations, requirer methods of estimating beari proportioning of foundations	ng capacity, settlen	nents of	footings		8

UNIT 3	Pile foundations, methods of estimating load transfer of piles, settlements of foundations, pile group capacity and settlement, negative skin friction of laterally loaded piles, pile load tests, analytical estimation of load-settle behaviour of piles, proportioning of pile foundations, the lateral and capacity of piles.	piles, ement	10		
UNIT 4	Well foundation IS and IRC codal provisions elastic theory and ultimate				
UNIT 5	UNIT 5 Foundations under uplifting loads. Foundations on problematic soils: Foundations for collapsible and expansive soil.				
	TOTAL		42		
REFERE					
S. No.	Name of Books/Authors/Publishers	Year of Publica Reprin	ation /		
			ation /		
S. No.	Name of Books/Authors/Publishers Bowles. J.E., (1997),"Foundation Analysis and Design, Tata McGraw-	Publica Reprin	ation /		
S. No.	Name of Books/Authors/PublishersBowles. J.E., (1997), "Foundation Analysis and Design, Tata McGraw- Hill International Edition"Das B.M., (1999), "Shallow Foundations: Bearing capacity and	Publica Reprin 1997	ation /		

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech.	Geotechnical Engineering						
Course c	ode: Course Title		Cou Stru	irse ucture	•	Pre-Requ	isite
GTE507: Soil Dynamics and MachineLTPFoundations302							
degree of	bjective: The objective of this freedom system, methods of e machine foundations, and var	valuation of design p	arame	ters, ap	plication		
-	-		-	_	_	-	
S. No	Course Outcomes (CO)			1		1 -	
CO1	Understand the basic knowle soil.	dge about the theory	of vib	ration	and the	e dynamic b	ehaviour of
CO2	Analyse wave propagation ir	to soil and vibration	measu	uring in	nstrum	ents.	
CO3	Analyse and design the suita subjected to different types of		n for c	lifferer	nt struc	ctures	
CO4	Analyse and design foundation engines.		namic	stiffne	ss of p	iles, and rec	iprocating
CO5	Analyse different types of vi instrumentation.	bration isolation syst	ems, o	leform	ation p	oroblems, an	d dynamic
	СО	-PO Articulation M	etrice	5			
Course Outco me	PO1	PO2				PO3	
CO1	3	1				1	
CO2	3	2				1	
CO3	3	2				1	
CO4	3	3				2	
CO5	3	3				3	
S. No		Contents					Contact hours
UNIT 1	Introduction, fundamentals of dashpot systems, degrees of	-	n of e	lement	ary spi	ring, mass,	8
UNIT 2	Dynamic properties of geo-materials, wave propagation; Laboratory and field tests for evaluation of dynamic soil properties; vibration sensors.						
UNIT 3	Vibration of foundations on e with dynamic loads					oundations	10

UNIT 4	Dynamic stiffness of single pile and pile groups; Lumped parameter solutions, analysis and design of foundations for hammers, reciprocating engines and turbo generators							
UNIT 5	Vibration isolation, retaining walls, small and large deformat dynamic instrumentation	tion pr	oblems,	8				
	TOTAL			42				
-	· ·							
REFERI	ENCES							
S. No.	Name of Books/Authors/Publishers		Year o Public Reprin	ation /				
1	Das, B.M. (1983) "Fundamentals of Soil Dynamics", Elsevier		1983					
2	Steven Kramer (2008), "Geotechnical Earthquake Engineering",	n 2008						
3	Prakash, S. (1981), Soil Dynamics, McGraw-Hill,	1981						
4	Kameswara Rao, N.S.V. (1998), "Vibration analysis and foundati dynamics,	1998						

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

	Geotechnical Engineering ode: Course Title		Cou	irse ucture.		Pre-Requ	isite
GTE511	: Geo-environmental Enginee	ering	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
soil-enviro contamina	Objective: The objective of this onment interaction, soil minera ant analysis, design of various la at approaches.	alogy, soil-water inte	ractio	n, Soil	-water-	contaminant	interaction
-	_		_	_	_	-	
S. No	Course Outcomes (CO)		I			1 -	
CO1	Understand the properties of	water in relation to th	ne por	ous me	edia.		
CO2	Understand the mechanisms	of soil-water interact	ion.				
CO3	Analyse soil-waste interactio	n.					
CO4	Apply containment principles	s to detect the level o	f cont	amina	tion.		
CO5	Design an appropriate barrier	to control contamination	ation				
	CO-	PO Articulation Me	etrice	8			
Course Outco me	PO1	PO2				PO3	
CO1	3	1				1	
CO2	3	2				1	
CO3	3	2				1	
CO4	3	3				2	
CO5	3	3				3	
S. No		Contents					Contact hours
UNIT 1	Soil as a multiphase system; S relation to the porous media medium.			· ·			8
UNIT 2	Soil mineralogy; significance of mineralogy in determining soil behaviour; Mineralogical characterization. Mechanisms of soil-water interaction: Diffuse						8
UNIT 3	double layer models; Force of attraction and repulsion; Soil-water-contaminant interaction; Theories of ion exchange; Influence of organic and inorganic chemical interaction. Concepts of waste containment;						

	Sources, production, and classification of wast regulations.	and							
UNIT 4	Physico-chemical properties of soil, ground water flow, and contaminar transport, desirable properties of soil, contaminant transport, and retentior contaminated site remediation. Soil characterization techniques; volumetri water content; gas permeation in soil; electrical and thermal properties; pore-siz distribution; contaminant analysis. contaminated site characterization.								
UNIT 5	Estimation of landfill quantities, landfill site locat components such as liners, covers, leachate of generation and management, ground water monito slurry walls and barrier systems, design and constr and performance, remediation technologies, stabi and risk assessment approaches.	, gas sites, bility	8						
	TOTAL						42		
_	-	-	-	-	-				
REFERE	INCES								
S. No.	Name of Books/Authors/Publishers					Year o Publio Repri	cation /		
1	Mitchell, J.K., and Soga, K. (2005). Fundamentals John Wiley and Sons Inc.	s of Sc	oil Beh	aviour	,	2005			
2	Fang, H-Y. (1997). "Introduction to Environmental Geotechnology, CRC Press"					1997			
3	Daniel, D.E. (1993) "Geotechnical Practice for Waste Disposal, Chapman and Hall."					1993			
4	Rowe, R.K., Quigley, R.M. and Booker, J.R.,(1995) "Clay Barrier Systems for Waste Disposal Facilities, E & FN Spon,"					1995			
5	Reddi, L.N. and Inyang, H.F. (2000) "Geo-environmental Engineering - Principles and Applications, Marcel				ng -	2000			

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

Course c	code: Course Title		Cou Stru	irse icture	•	Pre-Requ	quisite	
	TE513: Application of Remote Sensing and GIS in Geotechnical EngineeringLTP302Nil							
the princi	Objective: The objective of this ples of Remote Sensing and GIS and monitoring	-			-			
_	_		_	_	_	-		
S. No	Course Outcomes (CO)					1 -		
CO1	An ability to acquire knowledg	e of the basic principl	es of GI	S and I	mage F	Processing		
CO2	An ability to utilize GIS packa applications	ges and their salient fo	eatures f	or data	acquis	ition for geot	echnical	
CO3	Understand spatial analysis and	d data pre-processing						
CO4	Apply georeferencing, interpol	ation of data, GPS, an	d netwo	rk syste	ems.			
CO5	Develop statistical models and	apply GIS to various	natural 1	resource	es map	ping and mor	itoring.	
	СО	-PO Articulation N	letrices	8				
Course Outco me	PO1	PO2				PO3		
CO1	3	1				1		
CO2	3	2				1		
CO3	3	2				1		
CO4	3	3				2		
CO5	3	3				3		
S. No		Contents					Contac hours	
UNIT 1	Introduction, Geographical co Processing system and GIS, Ut	-	logy, Di	ifferenc	e betv	veen Image	8	
UNIT 2	Various GIS packages and their salient features, Essentials components of GIS, Data acquisition through scanners and digitizers, Raster and Vector Data: Introduction,						8	
	Descriptions: Raster and Vector data, Raster Versus Vector, Raster to Vector conversion Remote Sensing Data in GIS, Topology and Spatial Relationships, Data storage verification and editing of Data pre-processing							

UNIT 4 Georeferencing, Data compression and reduction techniques, Run length encoding, Interpolation of data, Database Construction, GIS and the GPS, Data Output Database structure, Hierarchical data, Network systems, Relational database, Database management, Data manipulation and analysis					
UNIT 5 Spatial and mathematical operations in GIS, Overlay, Query-based, Measurement and statistical modelling, Buffers, Spatial Analysis, Statistical Reporting and Graphing, Application of GIS to various natural resources mapping and monitoring, and engineering problems					
	TOTAL		42		
REFERF	INCES				
S. No.	Name of Books/Authors/Publishers	Year o Public Reprii	ation /		
1	Burrough, P.A. and McDonnel, R.A., (2000) "Principles of Geographic Information Systems", Oxford University Press.	2000			
2	Chrisman, Nicholas R. (2002). "Exploring Geographic Information Systems." John Wiley.	2002			
3	Demers, Michael N., (2008)"Fundamentals of Geographic Information Systems", 2nd Ed. Wiley.	2008			
4	Ghosh, S.K. and Chandra, A.M., (2008) "Remote Sensing and GIS", Narosa Publishing House.	2008			
5	Lo, C.P. and Young, A.K.W., (2002) "Concepts and Techniques of Geographical Information Systems", Prentice Hall India.	2002			

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Geotechnical Engineering						
Course code: Course Title	Cou	Course Structure. Pre-Requisite				
	L	Т	Р	NT'1		
GTE515: Tunnel Engineering	3	0	2	Nil		

Course Objective: To impart advanced theoretical and practical knowledge in the planning, design, construction, and maintenance of tunnels. To develop proficiency in tunnel behavior modeling and numerical simulation techniques. To evaluate complex tunnel-ground interactions, advanced support systems, and monitoring strategies. To expose students to global tunnel projects and innovations through critical case studies and research review.

	-							
S. No		Course Outcom	nes (CO)					
CO1	Integrate geological, geotechnical, and structural knowledge for advanced tunnel analysis.							
CO2	Design tunnels under various geological and loading conditions using analytical and numerical methods, including NATM, SEM, and mechanized tunnelling techniques, effectively.							
CO3	Evaluate the performance of	f tunnel linings and su	apport systems through monito	oring data.				
CO4	Conduct risk assessments an	nd apply mitigation st	rategies in complex tunnelling	scenarios.				
CO5	Review and critique contem	Review and critique contemporary research and innovations in tunnelling						
	CO-	PO Articulation Met	trices					
Course Outcome	PO1	PO2	PO3					
CO1	3	1	1					
CO2	3	2	1					
CO3	3	2	1					
CO4	3	3	2					
CO5	3	3	3					
S. No		Contents		Contact hours				
UNIT 1	Geological hazards: faul Hydrogeological impacts or	t zones, squeezing 1 tunnels. Tunnel-Gro Elastic, elasto-plasti	lex geology in tunneling. g, and swelling grounds. ound Interaction and Design: ic methods, Convergence- support systems.	8				

	TOTAL	42
UNIT 5	Case Studies and Research Trends: In-depth analysis of recent tunnel projects (e.g., Brenner Base Tunnel, Gotthard Base Tunnel), Discussion on AI/ML in tunneling, digital twins, Review of current literature and international tunneling standards.	8
UNIT 4	Instrumentation and Monitoring: Instrumentation techniques: extensometers, load cells, piezometers, Deformation and stress monitoring, Real-time data interpretation and decision support. Risk and Sustainability in Tunneling: Probabilistic risk assessment, Life-cycle analysis, Environmental and social considerations.	8
UNIT 3	Advanced Construction Techniques: Sequential Excavation Method (SEM), NATM applications and control, Mechanized tunneling: EPB, Slurry TBM, Hybrid machines. Lining Design and Segmental Tunnels: Design of precast segments and gaskets, Fiber-reinforced linings, Corrosion protection, and waterproofing systems.	10
UNIT 2	Numerical Modeling and Simulation; Finite Element Method (FEM) and Finite Difference Method (FDM) for tunnels, Software tools: PLAXIS, FLAC3D, Phase2, Modeling construction stages and ground relaxation.	8

REFERE	REFERENCES					
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint				
1	Tunnelling in Rock, Authors: E.T. Brown. Publisher: CRC Press / Balkema.	2002				
2	Mechanised Shield Tunnelling, <i>Authors:</i> Bernhard Maidl, Markus Thewes, Ulrich Maidl. <i>Publisher:</i> Ernst & Sohn / Wiley.	2012				
3	Tunnel Engineering Handbook (2nd Edition). <i>Editors:</i> Thomas R. Kuesel, Elwyn H. King, John O. Bickel. <i>Publisher:</i> Springer.	1996				
4	Design and Construction of Tunnels: Analysis of Controlled Deformations in Rock and Soils (ADECO-RS). <i>Author:</i> Pietro Lunardi. <i>Publisher:</i> Springer.	2015				
5	Numerical Methods in Geotechnical Engineering. <i>Author:</i> Michael Smith <i>Publisher:</i> CRC Press / Taylor & Francis.	2008				
6	Geotechnical Aspects of Underground Construction in Soft Ground, <i>Edited by:</i> C. Bakker, A. Bezuijen, W. Broere, E. Kwast. <i>Publisher:</i> CRC Press / Taylor & Francis.	2006				

M. Tech.	Geotechnical Engineering							
Course c	ode: Course Title		Cou Stru	irse ucture.		Pre-Requ	isite	
GTE520	GTE520: Theoretical Soil MechanicsLTP302Nil							
stress and dimension	D bjective: The objective of this strain analysis in soils. Students al cases, effective stress principle strain states.	will learn about elastic eo	quilib	rium ana	alysis f	or plane strai	n and three-	
-	-		_	-	_	-		
S. No	Course Outcomes (CO)							
CO1	Comprehensive Understanding	of Stress and Strain in S	Soils.					
CO2	Mastery of Soil Mechanics The	orems and Compatibilit	y Con	ditions.				
CO3	Expertise in Plasticity and Failu	are Mechanisms.						
CO4	Understanding of Anisotropic I	Behaviour and Elastic-Pl	lastic	Theorie	8.			
CO5	Proficiency in Advanced Soil B	ehaviour and Rheologic	al Mo	delling.				
	CO	-PO Articulation Me	trice	8				
Course Outco me	PO1	PO2				PO3		
CO1	3	1				1		
CO2	3	2				1		
CO3	3	2				1		
CO4	3	3				2		
CO5	3	3				3		
S. No	. No Contents					Contact hours		
UNIT 1	Stress and Strain Analysis in Soils: Elastic Equilibrium Analysis for plane strain and three-dimensional cases. Effective stress, analysis of deformation and strain, state of stress and strain, and constitutive relations.					8		
UNIT 2	Theorems and Compatibility in Soil Mechanics: equilibrium and compatibility, general theorem of equilibrium. Drained and undrained loading, state boundary surface.8					8		
UNIT 3			Plasticity and Failure in Soils: plastic flow, yield and hardening, failure theorems for soils. Failures and plastic flow at critical state, associative and non-associative flow, and					

UNIT 4	Anisotropy, Elasticity, and Plastic Collapse: anisotropic compressions; ideal elastic behaviour-two and three-dimensional systems; theorems of plastic collapse. Application to soil interaction, elasto-plastic theory of soil.				
UNIT 5	Advanced Soil Behaviour and Rheological Models: rheological models; non viscoelasticity; problems and solutions.	-linear	8		
	TOTAL		42		
-					
REFERE	ENCES				
S. No.	Name of Books/Authors/Publishers	Year o Public Reprin	ation /		
1	Fundamentals of Theoretical Soil Mechanics: ME Harr (ISBN 978-0-070267411).	1996			
2	Elastic Solutions for Soils and Rock Mechanics: HG Poulos and EH Davis, (ISBN 9780471695653).	1974			
3	Theory of Elasticity & Plasticity: SP Timoshenko & JN Goodier, (ISBN 978-0-9791865-0-9).	1982			
4	Critical State Soil Mechanics: AN Schofield & CP Wroth, (ISBN 978-0641940484).	1968			

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- PO2: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Geotechnical Engineering				
Course code: Course Title	Course Structure.			Pre-Requisite
GTE522: Critical State Soil Mechanics		Т	Р	NU1
		0	2	Nil

Course Objective: The objective of this course is to provide students with a comprehensive understanding of soil behaviour, focusing on the state of stress and strain in soils, stress and strain paths, and the behaviour of soils under various laboratory experiments. Students will learn about critical state soil mechanics, including the critical state line and the Roscoe surface, and their application to undrained and drained tests.

-	-		-	-	-	-	
S. No	Course Outcomes (CO)						
CO1	Understanding of Stress and Str	rain in Soils					
CO2	Mastery of Critical State and Ro	oscoe Surface Concepts					
CO3	Expertise in Over-consolidated	Soil Behaviour and Hvo	orslev	Surface			
CO4	Proficiency in Sand Behaviour	Analysis					
CO5	CO5 Competence in Soil Behaviour Before Failure and Plasticity Models						
	CO-	PO Articulation Me	trices	8			
Course Outco me	PO1 PO2 PO3						
CO1	3	1				1	
CO2	3	2				1	
CO3	3	2				1	
CO4	3	3				2	
CO5	3	3				3	
	1						
S. No	Contents				Contact hours		
UNIT 1	1State of Stress and Strain in Soils: State of stress and strain in soils, Stress and strain paths and invariants, behaviour of soils under different laboratory experiments.8					8	
UNIT 2	NIT 2Critical State Line and Roscoe Surface: The Critical state line and the Roscoe surface: Families of undrained tests, Families of drained tests, the critical state line, drained and undrained surfaces, The Roscoe surface.					8	

UNIT 3	UNIT 3 Behaviour of Over-consolidated Samples and Hvorslev Surface: The Hvorslev surface: Behaviour of over-consolidated samples, drained and undrained tests, The Hvorslev surface, complete State Boundary Surface, Volume changes and pore water pressure changes.			
UNIT 4Behaviour of Sands: The critical state line for sands, Normalized plots, the effect of dilation, Consequences of Taylor's model				
UNIT 5 Behaviour of Soils before Failure: Elastic and plastic deformations, Plasticity theory, Development of elastic-plastic model based on critical state soil mechanics, The Cam- clay model, The modified Cam-clay model.				
TOTAL				
REFERE	INCES			
S. No.	S. No. Name of Books/Authors/Publishers Year Rep			
1	J. H. Atkinson and P. L. Bransby, (1978), "The mechanics of soils: An introduction to critical state soil mechanics", McGraw-Hill			
2	D. M. Wood, (1990) "Soil behaviour and critical state soil mechanics", Cambridge University Press 1990			
3	B. M. Das, (2013)"Fundamentals of Geotechnical Engineering", Cengage 2013 Learning,			

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Geotechnical Engineering						
Course code: Course Title	Course Structure.			Pre-Requisite		
GTE524: Cost Management of Engineering Project		Т	Р	NĽ1		
		0	2	Nil		

Course Objective: The objective of this course is to provide students with a comprehensive understanding of cost behaviour, profit planning, and various cost management techniques used in modern business environments. Students will learn about marginal costing and absorption costing methods, including their distinctions and applications in decision-making.

S. No	Course Outcomes (CO)
CO 1	Comprehensive Understanding of Cost Behaviour and Profit Planning
CO2	Proficiency in Decision-Making and Variance Analysis
CO3	Expertise in Advanced Cost Management Approaches
CO4	Mastery of Activity-Based Cost Management and Strategic Tools
CO5	Competence in Budgetary Control and Quantitative Techniques

	CO-PO Articulation Metrices							
Course Outco me	PO1	PO2	РОЗ					
CO1	3	1	1					
CO2	3	2	1					
CO3	3	2	1					
CO4	3	3	2					
CO5	3	3	3					

S. No	No Contents					
UNIT 1	Cost Behaviour and Profit Planning: Cost Behaviour and Profit Planning, Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis.	8				
UNIT 2	Decision-Making and Cost Management Techniques: Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing.	8				
UNIT 3	Costing in Different Sectors and Advanced Approaches: Costing of the service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management, and Theory of constraints.	10				

3	N.D. Vohra, Quantitative Techniques in Management, Tata McGraw-Hill Book Co. Ltd. (2015)	2015			
2	Ashish K. Bhattacharya, Principles & Practices of Cost Accounting, A. H. Wheeler, publisher.				
1	Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting (2003)	2003			
S. No.	Name of Books/Authors/Publishers	Year Public Repri	cation /		
REFER	ENCES				
_					
	TOTAL		42		
UNIT 5	Derformence hudgets Zero based hudgets Measurement of Divisional				
	Budgetary Control and Quantitative Techniques: Budgetary Control; Flexible Bud	daete	8		
UNIT 4	Activity-Based Cost Management and Strategic Tools: Activity-Based Management, Bench Marking, Balanced Score Card and Value- Analysis. Budgetary Control		8		

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Geotechnical Engineering						
Course code: Course Title	Course Structure.			Pre-Requisite		
GTE530: Geotechnical Earthquake Engineering		Т	Р	NĽ1		
		1	0	Nil		

Course Objective: The objective of this course is to provide students with a comprehensive understanding of engineering seismology, including the assessment of seismic risks and hazards, the dynamic response of soils and structures to earthquakes, and the design of earthquake-resistant structures. Students will learn to Analyse seismic data, determine site-specific characteristics, and apply engineering principles to mitigate the effects of seismic events on infrastructure.

S. No	Course Outcomes (CO)
CO1	Understanding of Seismic Risks and Earthquake Fundamentals
CO2	Proficiency in Site Characterization and Design Earthquake Determination
CO3	Expertise in Dynamic Soil Behaviour and Liquefaction Analysis
CO4	Competence in Seismic Analysis and Design of Infrastructure
CO5	Application of Mitigation Techniques and Analysis of Case Histories

	С	O-PO Articulation Metrices	5	
Course Outco me	PO1	PO2	PO3	
CO1	3	1	1	
CO2	3	2	1	
CO3	3	2	1	
CO4	3	3	2	
CO5	3	3	3	
S. No		Contents		Contact hours

S. No	Contents	hours				
	Fundamentals of Engineering Seismology: Introduction to engineering	8				
UNIT 1	seismology, seismic risks and hazards, causes and strength of earthquakes, social					
	and economic consequences, Theory of dynamic and seismic response, the nature					
	and attenuation of earthquake magnitude, Ground motion characteristics.					
	Site Characterization and Design Earthquake: Determination of site	8				
UNIT 2	characteristics, local geology and soil condition, Determination of design					
	earthquake, response spectra, and accelerograms.					

UNIT 3Site Response and Soil Dynamics: Site response to earthquake site investigation and soil test; dynamic behaviour of soils, liquefaction and cyclic mobility, analysis of pore pressure development. In-situ test for liquefaction.					
UNIT 4Seismic Analysis and Design: Analysis and design of slopes, embankments, seismic response of soil structure system, foundation Earth retaining structures for seismic loading.					
UNIT 5	Case histories, mitigation techniques		8		
TOTAL					
REFERE	ENCES				
S. No.	Name of Books/Authors/Publishers	Year of Publica Reprint	tion /		
S. No. 1	Name of Books/Authors/PublishersSteven Kramer, (2008) "Geotechnical Earthquake Engineering", Pearson	Publica	tion /		
		Publica Reprint	tion /		

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

	Geotechnical Engineering		Cou	irse			
Course c	ode: Course Title			icture.		Pre-Requ	isite
GTE532: Stability Analysis of SlopesLTP310Nil							
understar types and	Objective: The objective of ading of slope stability analyst d causes of slope failures, A ate measures to mitigate slope	nalyse slope stability	nique	s. Stude	ents w	ill learn to i	dentify the
-	-		-	-	-	-	
S. No	Course Outcomes (CO)						
CO1	Understanding of Slope Stab	ility Principles					
CO2	Proficiency in Stability Anal	ysis Methods					
CO3	Competence in Seepage Ana	lysis and Control					
CO4	Expertise in Strengthening N	leasures and Mitigatio	on Te	chnique	es		
CO5	Proficient in Slope Monitori	ng and Maintenance					
	СО	-PO Articulation Me	trices	5			
Course Outco me	PO1	PO2				PO3	
CO1	3	1				1	
CO2	3	2				1	
CO3	3	2				1	
CO4	3	3				2	
CO5	3	3				3	
S. No		Contents					Contact hours
UNIT 1	Types and Causes of Slope F mechanics of slope failure, f		and	causes	of slop	be failures,	8
UNIT 2	Stability Analysis Methods: pressures; concept of factor Wedge methods, friction cir Janbu's method, Morgenster	of safety, pore pressure ccle method ; Method	e coet of sl	fficient lices, B	s, Mas	s analysis,	8

	Stability Analysis in the Presence of Seepage: two dimensional flow – L	aplace	10		
	equation and it's solution, graphical method, determination of phreatic line, flow				
UNIT 3	nets in homogeneous and zoned earth dams under steady seepage and draw	-down			
	conditions, seepage control in earth dams, influence of seepage on slope st	ability			
	analysis of dam body during steady seepage.Strengthening Measures and Mitigation Techniques: stabilization of slop	nog hv	8		
	drainage methods, surface and subsurface drainage, use of synthetic	~	0		
UNIT 4	-				
	retaining walls, stabilization and strengthening of slopes, shot-creting bolting, and rock anchoring.	2, IUCK			
	Instrumentation and Monitoring of Slopes: instrumentation and monitoring of				
UNIT 5	slopes, slope movements, warning devices, and maintenance of slopes.				
	TOTAL				
	TOTAL		42		
	TOTAL		42		
REFER			42		
REFER		Year o			
REFER		Year o Public	f		
	ENCES		f ation /		
	ENCES	Public	f ation /		
S. No.	ENCES Name of Books/Authors/Publishers	Public Reprir	f ation /		

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

Course c	code: Course Title			ırse ucture		Pre-Requ	isite
CTE524	. Devement Analysis and D	alvois and Design					
G1E534	: Pavement Analysis and D	esign	3	1	0		
_	-		_	-	_	-	
pavement flexible ar	Objective: The objective of the design principles and method and rigid pavements, Analyse payout parameters, material charac	ologies. Students will vements using various a	learn abo malytical	ut the metho	philoso ds, and	phy behind tl gain expertise	ne design o
-	_		-	_	_	-	
S. No	Course Outcomes (CO)					l	
CO1	Understanding of Pavement	Design Philosophy and	l Analyti	cal Met	hods		
CO2	Proficiency in Selection of D	esign Input Parameter	s and Ma	terial C	Characte	erization	
CO3	Expertise in Pavement Desig	n Methods and Compa	rison of .	Approa	ches		
CO4	Competence in Failure Criter	ria, Reliability, and Ov	erlay Des	sign			
CO5	Proficient in Pavement Drain	age and System Desig	n				
	С	O-PO Articulation	Metrice	S			
Course Outco me	PO1	PO2				PO3	
CO1	3	1				1	
CO2	3	2				1	
CO3	3	2				1	
CO4	3	3				2	
CO5	3	3				3	
S. No		Contents					Contact hours
UNIT 1	Philosophy of design of flex different analytical methods	xible and rigid pavem	ents, Ana	alysis c	of paver	nents using	8
	· · · ·	n input parameters – tr	affic load	ling an	d volun	ne, Material	8
UNIT 2	Selection of pavement design input parameters – traffic loading and volume, Material characterization Pavement Design Methods: Design of flexible and rigid pavements using different						

UNIT 4	Failure Criteria, Reliability, and Overlays: Understanding factors contributing to pavement failure, Reliability in Pavement Design, Design of Overlays.							
UNIT 5	Pavement Drainage and System Design: Importance of drainage in pavement design, designing effective drainage systems for pavements, Integrating overlay and drainage system design into pavement design strategies.							
	TOTAL		42					
_								
REFER	ENCES							
S. No.	Name of Books/Authors/PublishersYearPublicRepr							
1	Yang and H. Huang, (2004) "Pavement Analysis and Design, Pearson Prentice 2004 Hall"							
2	Yoder and Witzech (1982), "Pavement Design, McGraw-Hill."	1982						

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Geotechnical Engineering						
Course code: Course Title	Course Structure.			Pre-Requisite		
CTE540. Commutational Lab. Costochnical Engineering		Т	Р	Nil		
GTE540: Computational Lab- Geotechnical Engineering	0	0	8	INII		

Course Objective: To familiarize students with computational techniques for geotechnical problemsolving.

- To apply finite element and finite difference methods in geotechnical engineering.
- To analyze geotechnical structures using commercial and open-source software.
- To enhance skills in data visualization, interpretation, and technical documentation

S. No	Course Outcomes (CO)
CO1	Model complex geotechnical problems using state-of-the-art software.
CO2	Validate computational results with theoretical and empirical data.
CO3	Prepare professional reports and interpret simulation outputs effectively.
CO4	Integrate GIS and CAD tools for geotechnical site investigations.

CO-PO Articulation Metrices

	L L		
Course Outco me	PO1	PO2	РОЗ
CO1	3	1	1
CO2	3	2	1
CO3	1	2	1
CO4	3	3	2

S. No	Contents	Contact hours
UNIT 1	Numerical Modeling Fundamentals : Numerical solution of 1D consolidation, Stress distribution (Boussinesq theory) in layered soils, Slope stability using limit equilibrium in Python.	8
UNIT 2	Slope Stability Analysis : Deterministic and probabilistic analysis of slopes, Bishop, Janbu, and Morgenstern-Price methods, FEM-based slope failure simulation in PLAXIS. Seepage and Groundwater Flow . Seepage modeling in	8

	earthen dams, Steady-state and transient flow simulations, Flow net numerical solutions.	s vs	
UNIT 3	Stress-Deformation & Consolidation Analysis: Embankment loading settlement behavior, 1D, 2D consolidation under staged loading, Gr improvement modeling. Foundation System Modeling: Pile and raft found analysis under axial and lateral loads, Soil-structure interaction mode Comparison with analytical solutions.	ound ation	10
UNIT 4	Dynamic & Earthquake Analysis : Ground response analysis and liquefa potential, Earthquake loading on slopes and retaining walls, Modeling y propagation in soil. Geotechnical Drawing & Visualization: Borehold interpretation and 2D soil profiling, Site layout and geotechnical cross-sect GIS-based mapping of soil parameters.	wave e log	8
UNIT 5	Report Writing and Documentation : Creating structured lab reports technical papers, incorporating equations, tables, and figures, Reference citation management.		8
	TOTAL		42
REFERF	INCES		
S. No.	Name of Books/Authors/Publishers	Year Publi Repr	ication /
1	Several relevant software are: PLAXIS 2D/3D – Finite element analysis of soil and rock behavior. GeoStudio Suite (SLOPE/W, SEEP/W, SIGMA/W) – Slope stability, seepage, and stress-deformation analysis. FLAC (Fast Lagrangian Analysis of Continua) – Finite difference modeling for geotechnical applications. MIDAS GTS NX – Advanced geotechnical and tunneling simulations. AutoCAD / Civil 3D – Drafting and geotechnical drawing. MATLAB / GNU Octave – Numerical methods and scripting. Python (NumPy, SciPy, Matplotlib) – Custom geotechnical computation and visualization. QGIS – GIS-based subsurface modeling and site analysis.	Lates	t versions

M. Tech. Geotechnical Engineering					
Course code: Course Title	Course Structure.			Pre-Requisite	
GTE541: Introduction to AI Techniques in Geotechnical	L	Т	Р	Nil	
Engineering 1 0		0	2	INII	

Course Objective: The objective of this course is to introduce students to fundamental techniques and concepts in Artificial Intelligence (AI). The course will cover the basic principles of AI, machine learning, and deep learning, as well as their applications in various domains. Students will learn about different AI techniques, algorithms, and methodologies used for problem-solving and decision-making tasks. The course aims to provide a solid foundation in AI, enabling students to understand the capabilities and limitations of AI technologies and apply them effectively in practical scenarios. By the end of the course, students will be prepared to explore advanced topics in AI and pursue further studies or careers in AI-related fields.

S. No	Course Outcomes (CC))		
CO1	Understand Fundament	al AI Concepts.		
CO2	Apply AI Techniques.			
CO3	Evaluate AI Models.			
CO4	Utilize AI Tools and Fr	ameworks.		
CO5	Discuss Ethical and Soc	cial Implications		
		CO-PO Articulat	ion Metrices	
Course Outco me	PO1	PO2	РОЗ	
CO1	3	1	1	
CO2	3	2	1	
CO3	3	2	1	
CO4	3	3	2	
CO5	3	3	3	
S. No	Contents			Contact hours
UNIT 1			, definition, and components of ES. ning and backward reasoning.	5
UNIT 2	-	-	dge representation methods, and base, dealing with uncertainty, linear	4

	and nonlinear helperiour of verichlage statistical concents and their annligations	
	and nonlinear behaviour of variables, statistical concepts, and their applications to engineering and sciences.	
UNIT 3	Artificial Neural Networks (ANNs): background and history of ANNs, definitions and basic concepts of ANNs, biological and artificial neural networks, feed-forward and feed-back networks.	4
UNIT 4	Supervised and unsupervised learning methods-standard back-propagation (BP), concept of learning, learning rate and momentum concepts, self-organizing networks, etc., development of ANN models for specific problems, and selected case studies.	4
UNIT 5	Introduction to Genetic Algorithms (GAs): fundamentals and preliminary concepts of evolution and GA, preliminaries of optimization, genetic operators-selection, crossover, and mutation, binary and real-coded GAs, selected case	5
	studies involving GA applications to engineering.	
	TOTAL	22
REFERF	INCES	
S. No.	Year	ication /
1	Russell & Norvig: Artificial Intelligence; A Modern Approach, 3rd 2010	
2	Qiangfu ZHAO and Tatsuo Higuchi, Artificial Intelligence: from fundamentals to intelligent searches, Kyoritsu.	

Course	code: Course Title		Cou Stru	rse icture.		Pre-Requ	isite
GTE542 Enginee	2: Modelling and Simulation i ering	n Geotechnical	L 2	Т 0	P 4	Nil	
Course solving.	Objective: To familiarize stud	lents with computation	onal te	chnique	es for g	geotechnica	l problem
• 1	To apply finite element and finit	te difference method	s in ge	otechn	ical en	gineering.	
• 1	To analyze geotechnical structur	res using commercia	l and o	pen-so	urce so	oftware.	
• 7	To enhance skills in data visuali	zation, interpretation	n, and t	echnic	al docu	umentation	
S. No	Course Outcomes (CO)						
CO1	Model complex geotechnical	problems using stat	e-of-th	e-art s	oftwar	e.	
CO2	Validate computational resul	Validate computational results with theoretical and empirical data.					
CO3	Prepare professional reports and interpret simulation outputs effectively.					ely.	
CO4	Integrate GIS and CAD tools	for geotechnical site	e inves	tigatio	ns.		
~	CO	-PO Articulation M	etrices	5			
Course Outco me	PO1	PO2				PO3	
CO1	3	1				1	
CO2	3	2				1	
CO3	1	2				1	
CO4	3	3				2	
S. No		Contents					Contac hours
UNIT 1	Numerical Modeling Funda Stress distribution (Boussines equilibrium in Python.					,	8
UNIT 2	Slope Stability Analysis: D Bishop, Janbu, and Morge simulation in PLAXIS. Seep	nstern-Price method	ls, FE	M-base	ed slo	pe failure	8

		r		
	earthen dams, Steady-state and transient flow simulations, Flow net numerical solutions.	s vs		
UNIT 3 Stress-Deformation & Consolidation Analysis: Embankment loading and settlement behavior, 1D, 2D consolidation under staged loading, Ground improvement modeling. Foundation System Modeling: Pile and raft foundation analysis under axial and lateral loads, Soil-structure interaction modeling, Comparison with analytical solutions.				
UNIT 4	Dynamic & Earthquake Analysis : Ground response analysis and liquefact potential, Earthquake loading on slopes and retaining walls, Modeling we propagation in soil. Geotechnical Drawing & Visualization: Boreholde interpretation and 2D soil profiling, Site layout and geotechnical cross-sector GIS-based mapping of soil parameters.	wave e log	8	
UNIT 5	Report Writing and Documentation : Creating structured lab reports technical papers, incorporating equations, tables, and figures, Reference citation management.		8	
	TOTAL		42	
REFERE	INCES			
S. No.	Name of Books/Authors/Publishers	Year Publi Repr	cation /	
1	Several relevant software are: PLAXIS 2D/3D – Finite element analysis of soil and rock behavior. GeoStudio Suite (SLOPE/W, SEEP/W, SIGMA/W) – Slope stability, seepage, and stress-deformation analysis. FLAC (Fast Lagrangian Analysis of Continua) – Finite difference modeling for geotechnical applications. MIDAS GTS NX – Advanced geotechnical and tunneling simulations. AutoCAD / Civil 3D – Drafting and geotechnical drawing. MATLAB / GNU Octave – Numerical methods and scripting. Python (NumPy, SciPy, Matplotlib) – Custom geotechnical computation and visualization. QGIS – GIS-based subsurface modeling and site analysis.		t versions	
2	Geotechnical Modelling, David Muir Wood. Routledge, Taylor & Francis Co.	2004		

M. Tech. Geotechnical Engineering				
	Course Structure. Pre-Requisit		Pre-Requisite	
CTE(01, Easth Pressure and Easth Dataining Structures	L	Т	Р	GTE501: Advanced
GTE601: Earth Pressure and Earth Retaining Structures		0	1	Soil Mechanics

Course Objective: To develop a deep understanding of earth pressure theories under static and dynamic conditions.

- To analyze and design retaining walls, sheet pile walls, and reinforced soil structures.
- To understand construction methods, failure mechanisms, and stability aspects of earth retaining systems.
- To introduce modern approaches such as geosynthetics and soil nailing in earth retention.

S. No	Course Outcomes (CO)					
CO1	Apply theoretical and empirical methods to compute earth pressures.					
CO2	Design and analyse various	retaining systems under	different loading conditions			
CO3	Select appropriate construct	ion methods based on si	ite and design constraints.			
CO4	Evaluate stability and servic	eability aspects of earth	n retaining structures.			
	CO	-PO Articulation Met	rices			
Course Outco	PO1	PO2	PO3			
me	2	1	1			
CO1	3	1	1			
CO2	3	2	1			
CO3	3	2	1			
CO4	3	3	2			
S. No		Contents		Contact hours		
UNIT 1	Fundamentals of Earth Pre Classical earth pressure theor and layered backfills, Influer Wall Design: Types of retain	ries (Rankine, Coulomb), Earth pressure on inclined and wall friction. Retaining	8		

	for static and seismic conditions, Drainage and backfill requirements, Structural and stability checks (sliding, overturning, bearing capacity).					
UNIT 2	UNIT 2 Sheet Pile Walls and Braced Excavations: Types of sheet pile walls: cantilever, anchored, Earth pressure distribution and analysis, Design of anchors and struts, Construction methods and dewatering.					
UNIT 3	Reinforced Soil Structures : Concept of soil reinforcement, Design of reinf earth walls (tie-back, geogrid-based), Construction and performance mechanically stabilized earth (MSE) walls, Role of geosynthetics and for elements.	e of	10			
UNIT 4	Soil Nailing and Diaphragm Walls : Soil nailing technique and d principles, Applications and construction methods, Diaphragm walls: t construction, and design considerations.	U	8			
UNIT 5	Earth Pressure and Retaining Structures under Dynamic Loading : Dynanalysis of retaining walls, Pseudo-static and dynamic methods, Design detailing under shock loading, thermal loading, and earthquakes.		8			
	TOTAL		42			
REFERF	INCES					
S. No.	Name of Books/Authors/Publishers	Year Publi Repri	cation /			
1	Sabat, A.K. and Das, B.M. – <i>Earth Retaining Structures and Underground Excavations</i> , CRC Press, 1st Edition.	2003				
2	Craig, R.F. – <i>Soil Mechanics</i> , CRC Press (Taylor & Francis), 8th Edition. 2012					
3	Das, B.M. – <i>Principles of Foundation Engineering</i> , Cengage Learning, 9th Edition.	2022				
4	Bowels, J.E. – Foundation Analysis and Design, McGraw-Hill	1996				
	Education, 5th Edition.	1770				

M. Tech. Geotechnical Engineering					
Course code: Course Title	Course Structure.			Pre-Requisite	
GTE605: Ground Improvement Techniques		Т	Р	GTE501: Advanced	
		1	0	Soil Mechanics	

Course Objective: To understand the principles behind various ground improvement techniques.

- To develop the ability to select suitable methods based on soil conditions and project requirements.
- To analyze and design ground improvement systems for soft clays, loose sands, and expansive soils.
- To introduce construction methods, quality control, and field performance evaluation.

S. No	Course Outcomes (CO)					
CO1	Identify and assess the need for ground improvement in geotechnical projects.					
CO2	Select and design appropri	ate ground improven	nent techniques.			
CO3	Apply theoretical principle	es to field practice th	rough design exercises.			
CO4	Evaluate the effectiveness	of ground improvem	ent through monitoring and cas	se studies.		
CO5	Identify and assess the nee	d for ground improv	ement in geotechnical projects.			
	CO·	-PO Articulation M	etrices			
Course Outcome	PO1 PO2 PO3					
CO1	3	1	1			
CO2	3	2	1			
CO3	3	2	1			
CO4	3	3	2			
CO5	3	3	3			
C N-	1	Contort		Contact		
S. No		Contents		hours		
UNIT 1	improvement, Classificati based on soil type and proj	on of methods, Sele ect needs. Mechanic c), Vibro-compacti	cessity and scope of ground ection criteria for techniques cal Modification: Compaction on and vibro-replacement, tical drains.	8		

UNIT 2	 IT 2 Drainage and Dewatering Techniques: Types of drains: sand drains, prefabricated vertical drains (PVDs), Electro-osmosis, Vacuum consolidation. Grouting and Injection Techniques: Types of grouts (chemical, cementitious, bituminous, etc.), Grouting methods: permeation, compaction, jet, fracture grouting, Applications and quality control. 			
UNIT 3Reinforcement Techniques: Reinforced earth and geosynthetics (geotextiles, geogrids, geomembranes). Stone columns and sand compaction piles. Application in embankments and retaining structures.				
UNIT 4	Chemical and Thermal Methods: Lime and cement stabilization, Fly as other industrial byproducts, Ground freezing and thermal stabiliz techniques. Soil Bio-Improvement (Emerging Techniques): Micro- induced calcite precipitation (MICP), Enzyme-based soil stabiliz Research trends and case studies.	zation obial-	8	
UNIT 5	Field Implementation and Monitoring : Construction techniques and que control, Instrumentation for performance monitoring, Case studie successful applications.	•	8	
	TOTAL		42	
REFEREN	NCES			
S. No.	Name of Books/Authors/Publishers	Year o Public Reprii	ation /	
1	Hausmann, M.R. – <i>Engineering Principles of Ground Modification</i> , McGraw-Hill Education.	1990		
2	Sharma, S.K. and Sivapullaiah, P.V. – Ground Improvement2012Techniques, PHI Learning Pvt. Ltd., 1st Edition.2012			
3	Manfred Hausmann and Klaus Kirsch – <i>Ground Improvement by Deep</i> 2009 <i>Vibratory Methods</i> , CRC Press.			
4	Vibratory Methods, CRC Press. IS 15284 Part 1 & 2 – Design and Construction for Ground Lates Improvement – Guidelines, Bureau of Indian Standards. IS 13094 – Guidelines for Ground Improvement by Preloading Method, BIS. Lates			
5	Indraratna, B. and Chu, J. (Eds.) – <i>Ground Improvement: Case Histories</i> , Elsevier Geo-Engineering Book Series.	2005		